If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11d^2+20d=0
a = 11; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·11·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*11}=\frac{-40}{22} =-1+9/11 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*11}=\frac{0}{22} =0 $
| 4·(x+5)=2·(7-4x) | | .1=–3x–4.2 | | 19g^2+28g=0 | | -1-3x=11+x | | 432=3x^{2} | | 11x2+10x+5=0 | | 2b2=-11b-15 | | x+2x+2x+(x+30)+(x-20)+(x-10)=720 | | J^2-4j=0 | | 2+2(x-8)=4+5x | | (k-8)(k+4)=0 | | 5x-75=90 | | 8t^2-11t=0 | | 72x=85 | | 3-3p=-15 | | 1/6x+22/5=6 | | 6x+6–2x=86 | | 3x+9-8x=2 | | 5/16=x/9 | | V^2-28v=0 | | v-1/6=4/6 | | 3y+6=57 | | 3(x+4)+2x=6x-2+3x+10 | | 5x-19=2(-8x+1) | | Y^2+18y-19=0 | | 5x+(x+30)+(x-20)+(x-10)=720 | | .2t−5=−10 | | a=2.5=8 | | (4x+1)=(4+3x) | | 117+7m=215 | | (4x+1)=(4+3x)° | | 21n-65=208 |